
Advanced Unix System Administration

Spring 2007

Homework 2 Solutions

1. Becoming a daemon. In principle, this is just the job of getting into the back-
ground and out of the user’s way. In practice, getting completely untangled from
the foreground is more difficult than you might expect.

a. You’ve probably noticed by now that forking a process puts it in the back-
ground. Examine, compile and run daemon1.c, which does just that. Follow
its execution using strace. What does the program do? What happens when
you try to log out? Why? (Hint: look at the files daemon1 has open.)

daemon1 prints out its PID, forks a child (which is in the background) and
exits, but its child spits out messages like this every five seconds:

21463: foobar

When you try to log out, the logout hangs, and the printing of the messages
continues.

In terms of going into the background, the interesting portion of the strace

output is fairly short:

21550 clone(child_stack=0,

flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,

child_tidptr=0x2afd48699760) = 21551

21550 exit_group(0) = ?

(The clone() system call is used in Linux to create both threads and processes;
fork() is a wrapper around clone().)

Looking at the output from lsof shows some interesting files open:

daemon1 21463 sluo 0u CHR 136,1 3 /dev/pts/1

daemon1 21463 sluo 1u CHR 136,1 3 /dev/pts/1

daemon1 21463 sluo 2u CHR 136,1 3 /dev/pts/1

The child has our tty open, which is why its messages continue to appear in
our terminal. The logout from an ssh session hangs because it’s waiting for
daemon1 to close the tty.

b. Compare daemon2.c to the previous version. What has changed? Now compile
and run it. Follow its execution using strace (or truss, or ktrace, or whatever
equivalent your OS has). What does this program do? Does it solve the
problems of the previous version? Look at the list of files it has open. Do you
think we’ve successfully solved the problem?

1

daemon2 closes file descriptors 0, 1, and 2 (which correspond to standard I/O)
and opens /dev/null in their place. The relevant part of the strace output
now looks like this:

21650 close(0) = 0

21650 close(1) = 0

21650 close(2) = 0

21650 clone(child_stack=0,

flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,

child_tidptr=0x2b1e6e8fc760) = 21651

21650 exit_group(0) = ?

21651 open("/dev/null", O_RDONLY) = 0

21651 open("/dev/null", O_WRONLY) = 1

21651 open("/dev/null", O_WRONLY) = 2

(Note the effect of the open() calls is to replace file descriptors 0, 1, and 2.)
This version solves the most obvious problems of the previous version (spitting
out junk to the terminal and hanging the session on logout), but the list of
open files shows at least one possible subtle problem:

daemon2 21693 sluo cwd DIR 22,0 4096 4049554

/home/sluo/hw2

The current working directory is the one we launched the program from; this
implies that this directory will be kept around on disk, even if deleted, until
daemon2 dies. Hence we’re not completely done here.

c. Try killing the parent’s process group (kill -TERM -[pgid], where the process
group ID will be equal to the process ID of the parent). What happens? Have
we successfully solved the problem?

Recall that the parent nicely gave us its PID on standard output before forking
its child; this PID also serves as the PGID for all of its children. Killing the
process group with kill -TERM -[pgid] ends up killing the child (despite the
fact that the parent process with that particular PGID is no longer around):

sluo@adv-login:~/hw2$./daemon2

Parent: pid 21700

sluo@adv-login:~/hw2$ pgrep daemon2

21701

sluo@adv-login:~/hw2$ kill -TERM -21700

sluo@adv-login:~/hw2$ pgrep daemon2

sluo@adv-login:~/hw2$

So we have not disentangled ourselves from the parent’s process group, which
could be a potential problem if we were spawned from something other than a
shell (i.e. from some manager process managing daemons). (As it turns out,

2

POSIX requires that PIDs not be reused until there are no processes in the
process group corresponding to that ID, so we are also holding up a PID.) In
other words, we still have some work to do.

d. Compare daemon3.c to the previous version. Now what has changed? Compile
and run it; follow its execution using strace. What does this program do?
Does it solve the problems of the previous version? Look at the list of files it
has open. Do you think we’ve successfully solved the problem?

daemon3’s child calls setsid() to change its session ID and become session
leader, ensures that it has no controlling terminal, changes to the root directory,
and changes the umask. (There was an error in the code I gave you for the
homework, which caused the program to exit after checking for a controlling
tty.) The relevant part of the strace output now looks like this:

21764 close(0) = 0

21764 close(1) = 0

21764 close(2) = 0

21764 clone(child_stack=0,

flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,

child_tidptr=0x2ba5be880760) = 21765

21764 munmap(0x2ba5be544000, 4096) = 0

21764 exit_group(0) = ?

21765 setsid() = 21765

21765 open("/dev/null", O_RDONLY) = 0

21765 open("/dev/null", O_WRONLY) = 1

21765 open("/dev/null", O_WRONLY) = 2

21765 open("/dev/tty", O_RDWR|O_NOCTTY) = -1 ENXIO

(No such device or address)

21765 chdir("/") = 0

21765 umask(022) = 022

(Your output would have looked more like this:

open("/dev/tty", O_RDWR|O_NOCTTY) = -1 ENXIO

(No such device or address)

ioctl(4294967295, TIOCNOTTY) = -1 EBADF

(Bad file descriptor)

exit_group(1) = ?

This shows the bug quite clearly – I didn’t check for the error return from the
open() call correctly, and the program thus tries to detach from a nonexistent
controlling tty.)

The lsof output shows a working directory of /, and attempting to kill the
parent’s process group gives us an error of ”No such process”, so we appear
to have solved the problems of previous versions. Indeed, daemon3 does do

3

enough to really get itself into the background. (Who knew it could be so
complicated?)

e. Set up OpenSSH’s sshd to run as yourself on a high port. Follow its execution
using strace. How does sshd get itself into the background? Does this have
any advantages over what daemon3 does?

The easiest way to do this was to generate new hostkeys with ssh-keygen,
create a copy of /etc/ssh/sshd config and modify it to use the new hostkeys
and a different port, and then start sshd with the -f option to specify the use
of the new config file.

The relevant part of the strace output is this:

21905 clone(child_stack=0,

flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,

child_tidptr=0x2b598ef60950) = 21906

21906 setsid(<unfinished ...>

21905 exit_group(0) = ?

21906 <... setsid resumed>) = 21906

21906 chdir("/") = 0

21906 open("/dev/null", O_RDWR) = 3

21906 fstat(3, {st_mode=S_IFCHR|0666,

st_rdev=makedev(1, 3), ...}) = 0

21906 dup2(3, 0) = 0

21906 dup2(3, 1) = 1

21906 dup2(3, 2) = 2

21906 close(3) = 0

21906 open("/dev/tty", O_RDWR|O_NOCTTY) = -1 ENXIO

(No such device or address)

21906 chdir("/") = 0

This is quite similar to what daemon3 does, except that dup2() is used to re-
place standard I/O with /dev/null instead of close() and open(), and set-
ting the umask is not done. dup2() makes the file descriptor that is its second
argument a copy of its first argument; this is a more surefire way of ensuring
that the standard I/O file descriptors are replaced than the close()/open()
sequence. Setting the umask is considered good practice, since it ensures that
files created by the daemon will have sane permissions, but not doing it has no
consequences here, since the sshd child doesn’t create any files.

f. Look up what sessions and session leaders are. Why might you want to fork
twice when starting a daemon? Hint: this has something to do with the
process’s controlling terminal.

The Single Unix Specification version 3 (SUSv3) defines a “session” as (Base
Definitions volume, §3.337)

4

A collection of process groups established for job control purposes.
Each process group is a member of a session. A process is considered
to be a member of the session of which its process group is a member.
A newly created process joins the session of its creator. A process can
alter its session membership; see setsid(). There can be multiple
process groups in the same session.

§3.338 defines a session leader as “A process that has created a session”.

The documentation for setsid() (System Interfaces volume, §3) tells us that
“The setsid() function shall create a new session, if the calling process is
not a process group leader.” This explains calling fork() before setsid(); by
forking, we ensure that we are not the process group leader. We want to call
setsid() because “Upon return the calling process shall be the session leader
of this new session, shall be the process group leader of a new process group,
and shall have no controlling terminal”; this solves a whole lot of problems we
noticed earlier.

The definition of the POSIX terminal interface (Base Definitions volume, §11)
tells us why a daemon writer might care about sessions; in particular, §11.1.3
says

If a session leader has no controlling terminal, and opens a terminal
device file that is not already associated with a session without us-
ing the O NOCTTY option (see open()), it is implementation-defined
whether the terminal becomes the controlling terminal of the session
leader. If a process which is not a session leader opens a terminal file,
or the O NOCTTY option is used on open(), then that terminal shall
not become the controlling terminal of the calling process.

which explains why we might want to fork twice. Forking after calling setsid()
ensures that we are not a session leader, which makes it much more difficult to
accidentally acquire a controlling tty (which is a problem for a daemon that’s
supposed to be in the background, not attached to any terminals).

The first parts of §11, and the documentation for setsid() (whether the SUSv3
definition or a man page from elsewhere) make for interesting reading in the
context of this homework assignment, in that they explain much of the dance
we do to get rid of our controlling terminal.

2. Tracing a running process. This exercise must be done on the login server. Among
the files for this week’s assignment is wrapper, which forks off a child process to
perform some tasks.

a. Run this program and observe its behavior. Now try tracing it with strace.
Does the program do the same thing? If not, why not?

We get the following output:

5

sh-3.1$./wrapper

Forked background process, pid 22187

This doesn’t tell us much. Tracing the program doesn’t change the behavior,
thanks to my braindamaged attempt at using Unix file permissions; this in
fact allows you to do the later parts of the problem much more easily than I
intended.

A fixed version (wrapper2) behaves the same way when not traced, but gives
us the following when traced:

sh-3.1$ strace -f -o /tmp/strace.out ./wrapper2

Incorrect gid -- go away

Why? A look at the binary tells us that the program is setgid:

-rwx--s--x 1 sluo sluo 9812 2007-02-26 03:37

/home/sluo/hw2-files/wrapper2

You cannot trace a setuid or setgid program for security reasons; the kernel
ignores the setuid or setgid bit when executing the program, to prevent you
from seeing information you shouldn’t.

b. Attach to the child process using strace. Describe in detail what the program
is doing or trying to do, and the errors it is getting.

The process seems to be doing this over and over again:

lseek(3, 256, SEEK_SET) = 256

read(3, "\275\321\rM\23\26)"..., 127) = 127

open("/etc/shadow", O_RDONLY) = -1 EACCES

(Permission denied)

open("/home/sluo/foobarbaz", O_RDONLY) = -1 ENOENT

(No such file or directory)

lseek(4, 64, SEEK_SET) = -1 ESPIPE

(Illegal seek)

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

rt_sigaction(SIGCHLD, NULL, {SIG_DFL}, 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

nanosleep({5, 0}, {5, 0}) = 0

It’s seeking to byte 256 on file descriptor 3 (whatever that is), and reading 127
bytes from that file. It then attempts to open /etc/shadow for reading, which
fails with ”Permission denied”, since /etc/shadow isn’t readable by ordinary
users. It then tries to open /home/sluo/foobarbaz for reading, which fails
because the file doesn’t exist. It then tries to seek to byte 64 on file descriptor
4, which fails because file descriptor 4 is a named pipe and seeking on pipes
isn’t permitted. After that, it sleeps for 5 seconds, and repeats.

6

c. What files does the process have open? Identify the file descriptors that were
referred to in the strace output.

read 25147 nobody 0u CHR 136,1 3

/dev/pts/1

read 25147 nobody 1u CHR 136,1 3

/dev/pts/1

read 25147 nobody 2u CHR 136,1 3

/dev/pts/1

read 25147 nobody 3r REG 22,0 1024 3915954

/home/sluo/entropy

read 25147 nobody 4r FIFO 22,0 3915953

/home/sluo/fifo

The process has our tty open on file descriptors 0, 1, and 2. File descriptor
3 is /home/sluo/entropy, which is 1024 bytes of /dev/urandom, while file
descriptor 4 is /home/sluo/fifo, a named pipe (as expected).

You could also have obtained this information directly via strace of the parent
process, because of the permissions screwup.

d. What did wrapper’s child process do after the call to fork()? (This might take
a bit of thought, but you do have enough information to answer this question,
assuming you already did the first three parts of the problem.)

read 25147 nobody txt REG 22,0 9324 4030772

/home/sluo/hw2-binaries/read

“txt” here refers to the code of the program being run. Hence we conclude
that wrapper’s child process executed /home/sluo/hw2-binaries/read.

Because of the permissions screwup, you could also have gotten this information
directly from strace.

e. Optional; might take a bit of thought. What do you think wrapper does before
the call to fork()?

Notice that the child process runs with your own GID (try ps -g yourgroup).
We know the parent is setgid; hence at some point it must have changed its
GID. (The call in this case is to setegid(), which changes the effective GID;
we’ll talk much more about this when we get to security.)

Again, because of the permissions screwup, you could have gotten this infor-
mation directly from strace.

7

