
Advanced Unix System Administration

Spring 2007

Homework 1

This assignment is due via email to <sluo+decal@ocf.berkeley.edu> by 11:59 PM on
Friday, February 16. All the files mentioned are in the tarball hw1-files.tar.gz, avail-
able from the website, or from ~sluo on the login server (plague.ocf.berkeley.edu).

If you do not already have access to the login server, you may want to email me about
setting up an account, as you may not want to run many of these exercises on your own
machines, and you definitely don’t want to do it on places like inst.eecs or the OCF.
If you have an OCF account, you can ask me to steal the password hash from there;
otherwise, you’ll need to arrange to meet me to have the account created.

Note that you’ll have to do some documentation-reading to answer some of these
questions. If you’re stuck, don’t hesitate to ask for help, but do try to look for the
answers on your own first – learning where to look is one of the more important sysadmin
skills.

1. Memory overcommit and out-of-memory behavior. Note: Do not do this exercise on

production machines. Compile and run malloc3.c; this is similar to the malloc2.c
demonstrated in class, but allocates all of the memory it desires before attempting
to write to any of it.

a. What happens when you run this program?

b. Create a large file (say, with dd). Find its SHA1 sum twice, timing it each
time. Run malloc3, then time the SHA1 sum operation again. What results
do you get? Can you explain them?

c. Can you imagine scenarios where this behavior might affect a process other
than the one writing to memory at the time the out-of-memory condition
occurs?

d. In situations where the consequences of overcommitting memory are unaccept-
able, how would you go about disabling this on your Linux system? What
would be some of the other effects of this change?

e. Optional. If you have a Linux machine where you have root access, try malloc3

with the configuration change from part (d). Use the machine for other tasks,
and try to use up some memory; do you notice any effect on your system’s per-
formance and behavior? If so, were they effects you predicted? [I’m still trying
to get the infrastructure set up to give everyone their own virtual containers
with full root access and the ability to play with things like kernel parameters,
so this isn’t really possible on the DeCal machine this week, unfortunately.]

2. Use of mmap(). Compile the two programs wcl.c and wcl-mmap.c. These two
programs count the number of newlines in a file, reading the whole file into memory

1



first (similar to what wc -l does, but in a dumber way). As the name suggests,
wcl-mmap uses mmap(), while wcl uses read(). Run the programs on a variety of
text files large and small (a copy of Project Gutenberg’s edition of War and Peace

is included in the tarball).

a. Which one is faster? Why?

b. Do not do this on production machines. Compile and run malloc4.c, which is
a modification of malloc2.c that uses smaller block sizes and continues to run
until interrupted by a signal. With malloc4 running (and hogging memory),
try wcl and wcl-mmap again on reasonably large files (greater than the amount
of free memory available on the system; cating War and Peace together a few
times should do it). Which one works? Why?

c. Optional; might take a bit of investigation. When would one not want to use
mmap() for file access?

3. Examining the process scheduler. The examples I hacked up for the demonstration in
class didn’t behave as expected because I didn’t think them through enough; here’s
a chance to play with examples that actually work. Do not run these examples on

multi-user machines.

a. Examine, compile, and run forkloop.c and forkloop-io.c, which fork child
processes until they are interrupted by a signal or reach a cap on the total
number of processes created. (Don’t worry if you don’t understand the C; the
comments say everything you need to know about the operation of these two
programs.) What distinguishes these two programs?

b. Run two copies of forkloop simultaneously with the same priority (see the
script run1). Do they share the CPU roughly equally? What about with one
copy running at lower priority (see script run2)?

c. Run forkloop and forkloop-io simultaneously with the same priority (see
script run3). Do they share the CPU equally? What happens when you lower
the priority of forkloop? Why?

4. The load average. If you watched the output of top and/or uptime while running
the forkloop examples, you probably noticed that the load average numbers spiked
while they were running.

a. How is this load average computed?

b. What is the “full utilization” load average for an n-processor machine? Why?

c. Optional. Suggest a small change or two to forkloop.c that would maximize
the load average spike produced by running it. You do not need to test your
change(s) (and you don’t want to, unless you have a system that you are willing
to hard reset afterwards).

2


