
Advanced Unix System Administration

Spring 2007

Homework 1 Solutions

1. Memory overcommit and out-of-memory behavior. Compile and run malloc3.c; this
is similar to the malloc2.c demonstrated in class, but allocates all of the memory
it desires before attempting to write to any of it.

a. What happens when you run this program?

sluo@adv-login:~/hw1$ ./malloc3

Succeeded in allocating 400 MB of RAM

Succeeded in allocating 800 MB of RAM

Succeeded in allocating 1200 MB of RAM

Succeeded in allocating 1600 MB of RAM

Succeeded in allocating 2000 MB of RAM

Succeeded in allocating 2400 MB of RAM

Succeeded in allocating 2800 MB of RAM

Succeeded in allocating 3200 MB of RAM

Succeeded in writing to 400 MB of RAM

Succeeded in writing to 800 MB of RAM

Succeeded in writing to 1200 MB of RAM

Succeeded in writing to 1600 MB of RAM

Killed

The program is killed when the system runs out of memory. Examination of
the kernel messages (which, unfortunately, you weren’t able to see if you were
on the login server) shows:

oom-killer: gfp_mask=0x280d2, order=0

Call Trace:

[way too much debugging output and memory info removed]

Out of Memory: Kill process 31446 (malloc3) score 819834

and children.

Out of memory: Killed process 31446 (malloc3).

The out-of-memory killer, which activates when there’s no more physical mem-
ory to be had and nothing can be pushed out, assigns each process a score based
on factors such as memory usage, and kills the one with the highest score.

Why did the system allocate so much memory in the first place (this is a system
with 2 GB of RAM and no swap)? The Linux VM system overcommits memory
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– that is, it’s willing to allocate memory beyond the amount of physical RAM
and swap available to a certain point, in the expectation that not all allocated
memory ends up being used. This reduces the need to swap to disk and/or
deny memory allocations, improving performance.

b. Create a large file (say, with dd). Find its SHA1 sum twice, timing it each
time. Run malloc3, then time the SHA1 sum operation again. What results
do you get? Can you explain them?

sluo@adv-login:~/hw1$ dd if=/dev/zero of=big-file bs=128M count=1

1+0 records in

1+0 records out

134217728 bytes (134 MB) copied, 0.474338 seconds, 283 MB/s

sluo@adv-login:~/hw1$ time sha1sum big-file

ba713b819c1202dcb0d178df9d2b3222ba1bba44 big-file

real 0m0.954s

user 0m0.812s

sys 0m0.140s

sluo@adv-login:~/hw1$ time sha1sum big-file

ba713b819c1202dcb0d178df9d2b3222ba1bba44 big-file

real 0m0.953s

user 0m0.800s

sys 0m0.148s

sluo@adv-login:~/hw1$ ./malloc3

[output removed]

sluo@adv-login:~/hw1$ time sha1sum big-file

ba713b819c1202dcb0d178df9d2b3222ba1bba44 big-file

real 0m2.209s

user 0m0.340s

sys 0m0.104s

The first two SHA1 hash operations are fast, but the last one is considerably
slower. This is because of the kernel’s caching of data; when you create the
file or read it, the kernel caches the result, in anticipation of future use of that
data. Thus the first two SHA1 hashes operate entirely in memory. The cached
data is pushed out when malloc3 creates memory pressure, so the last SHA1
operation has to read all of the file back in from disk.

Note that if you had used a pre-existing big file, or trashed the cache between
creating it and calculating the hash, the first and last SHA1 operations would
be slow, while the second would still be fast.
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c. Can you imagine scenarios where this behavior might affect a process other
than the one writing to memory at the time the out-of-memory condition
occurs?

This question was unclear; by “this behavior” I meant the behavior of the
out-of-memory killer. I’m ignoring it for purposes of grading the homework.

Anyhow, the primary risk from the out-of-memory killer comes when no one
process is hogging memory and piling up a big score. In such cases, it’s pos-
sible that the victim could be an innocent bystander, perhaps an important
system daemon whose killing would leave the system effectively inoperable.
(No, init won’t be killed under any circumstances, but on a system with no
console access, the death of sshd effectively leaves the system inaccessible, for
instance.)

d. In situations where the consequences of overcommitting memory are unaccept-
able, how would you go about disabling this on your Linux system? What
would be some of the other effects of this change?

The malloc() man page tells us that we can disable memory overcommit in the
kernel by writing the value 2 to /proc/sys/kernel/vm/overcommit memory.
vm/overcommit-accounting in the kernel documentation tells us that this
means that “The total address space commit for the system is not permitted
to exceed swap + a configurable percentage (default is 50) of physical RAM”.

Disabling memory overcommit will increase swap usage when the system is
busy, thus decreasing system performance. Applications may also run slower
if they could have made use of large sparse memory allocations.

e. Optional. If you have a Linux machine where you have root access, try malloc3

with the configuration change from part (d). Use the machine for other tasks,
and try to use up some memory; do you notice any effect on your system’s
performance and behavior? If so, were they effects you predicted?

2. Use of mmap(). Compile the two programs wcl.c and wcl-mmap.c. These two
programs count the number of newlines in a file, reading the whole file into memory
first (similar to what wc -l does, but in a dumber way). As the name suggests,
wcl-mmap uses mmap(), while wcl uses read(). Run the programs on a variety of
text files large and small (a copy of Project Gutenberg’s edition of War and Peace

is included in the tarball).

a. Which one is faster? Why?

sluo@adv-login:~/hw1$ time ./wcl war-and-peace.txt

67337 war-and-peace.txt

real 0m0.154s

user 0m0.000s
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sys 0m0.008s

sluo@adv-login:~/hw1$ ./malloc3

sluo@adv-login:~/hw1$ time ./wcl-mmap war-and-peace.txt

67337 war-and-peace.txt

real 0m0.143s

user 0m0.000s

sys 0m0.000s

The memory-mapped version is a bit faster, as the kernel is allowed to handle
the I/O itself. The call to malloc3 in between the invocations of the versions
of wcl was done to trash the cache; if you didn’t do this, you might have gotten
inconsistent results or not noticed much of a difference. Practically, though,
we don’t expect a very large difference – both programs do essentially the same
thing, one big read from disk into memory.

b. Compile and run malloc4.c, which is a modification of malloc2.c that uses
smaller block sizes and continues to run until interrupted by a signal. With
malloc4 running (and hogging memory), try wcl and wcl-mmap again on rea-
sonably large files (greater than the amount of free memory available on the
system; cating War and Peace together a few times should do it). Which one
works? Why?

wcl complains that it’s “unable to allocate buffer”, while wcl-mmap works fine.
This is because wcl calls malloc() to allocate all of the buffer at once; this
causes the kernel to look for a large memory allocation, which is refused. On
the other hand, wcl-mmap maps the file into memory; the kernel is therefore
free to have as much or as little of the file as it wants actually in physical
memory at any one time. This allows wcl-mmap to work with the file as if it
were all in memory (like both wcl and wcl-mmap expect), even though not all
of it fits.

c. Optional. When would one not want to use mmap() for file access?

The answer I was looking for is that mmap() works very poorly, if at all, over
NFS; this is because memory-mapped I/O is integrated intimately with the
kernel’s VM system, and having network access tied into the work of the ker-
nel’s paging system leads to many nasty issues. Consider, for instance, a case in
which the kernel is under memory pressure and looking to push out a memory-
mapped page backed by NFS to disk; this requires sending network traffic
to the NFS server, which might require allocating more memory! There are
also nasty caching issues with the design of NFS that make guaranteeing data
integrity in such a setup very difficult.

That was, however, by no means the only correct answer. It was also pointed
out that it’s impossible to mmap() all of a file – or any amount of data, in
general – larger than the size of the virtual address space. VM subsystems also
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tend to be extremely complicated beasts, and it usually works out to be easier,
safer, and more portable to use standard I/O mechanisms, in conjunction with
good buffering, than to use memory-mapped I/O.

3. Examining the process scheduler. The examples I hacked up for the demonstration
in class didn’t behave as expected because I didn’t think them through enough;
here’s a chance to play with examples that actually work.

a. Examine, compile, and run forkloop.c and forkloop-io.c, which fork child
processes until they are interrupted by a signal or reach a cap on the total
number of processes created. (Don’t worry if you don’t understand the C; the
comments say everything you need to know about the operation of these two
programs.) What distinguishes these two programs?

forkloop’s children simply (attempt to) compute the factorial of their process
ID, while forkloop-io’s children read from a file on disk as well.

b. Run two copies of forkloop simultaneously with the same priority (see the
script run1). Do they share the CPU roughly equally? What about with one
copy running at lower priority (see script run2)?

sluo@adv-login:~/hw1$ ./run1

31671: priority 0

31670: priority 0

31671: forked 4163 processes total

31670: forked 4180 processes total

sluo@adv-login:~/hw1$ ./run2

7570: priority 0

7571: priority 10

7570: forked 3432 processes total

7571: forked 2746 processes total

Unsurprisingly, two forkloops running with the same priority share the CPU
roughly equally, while the copy with lower priority suffers when the two are
run with different priorities.

c. Run forkloop and forkloop-io simultaneously with the same priority (see
script run3). Do they share the CPU equally? What happens when you lower
the priority of forkloop? Why?

sluo@adv-login:~/hw1$ ./run3 big-file

16111: priority 0

16110: priority 0

16110: forked 1670 processes total

16111: forked 2001 processes total

sluo@adv-login:~/hw1$ ./run4 big-file
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19785: priority 0

19786: priority 10

19785: forked 1991 processes total

19786: forked 1473 processes total

The forkloop-io process runs less frequently than the forkloop process does,
and this remains true when the priority of the forkloop process is lowered.
This happens because forkloop-io spends time blocking for I/O, and pro-
cesses that are blocked cannot be scheduled.

4. The load average. If you watched the output of top and/or uptime while running
the forkloop examples, you probably noticed that the load average numbers spiked
while they were running.

a. How is this load average computed?

The load average is an exponentially-damped moving average of the length of
the run queue over the past m minutes (where load is usually computed for
m = 1, m = 5, and m = 15). On Linux systems, the exact formula for the
one-minute load average is

Li = Li−1e
−5/60 + n

(

1 − e
−5/60

)

where Li is the current load average, Li−1 was the load average at the previous
sampling point, and n is the length of the run queue. See
http://www.teamquest.com/resources/gunther/display/5/index.htm

(the source for this formula) for a bit of analysis on these figures.

b. What is the “full utilization” load average for an n-processor machine? Why?

The full utilization load for an n-processor machine (by “processor”, we mean
any physical hardware capable of having a thread scheduled on it, be it a
processor in a socket, one core among many in a processor, or a processor with
HyperThreading) is simply n. The run queue gives us the number of processes
that are trying to run at any moment; on a system that’s being fully utilized
(but not overloaded), this should be equal to the number of processes that can
actually be run at once.

c. Optional. Suggest a small change or two to forkloop.c that would maximize
the load average spike produced by running it. You do not need to test your
change(s) (and you don’t want to, unless you have a system that you are willing
to hard reset afterwards).

There are two possible changes here. You could let each child fork its own
children, instead of only letting the parent create child processes. This lets the
number of processes grow exponentially, instead of linearly, with time. You
could also remove the sleep(1) that the children perform, which would make
the child processes compete much more actively to run, making the run queue
longer.
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