
System Administration:

Week 6 Notes

March 13, 2006

1 Logs

• Understanding what is in logs helps realize what is up with the operating
system: is somebody trying to compromise my server, is a driver crashing
my computer, etc

• Can edit file /etc/syslogd.conf where logs should go

• /var/adm/messages: a catchall file for lots of messages from the Unix
kernel and other logging applications like syslogd. Also sometimes used to
store miscellaneous log files, including those created by syslog for messages
not written to /usr/adm/messages or the console.

• var/adm/lastlog: stores information about users who are or have logged
onto the system. File is in binary and is used by last

• /var/adm/sulog: records all attempts by users to execute su.

• Unix makes backup files, numbering them sequentially higher

• Files labeled o.logname usually indicate an overflow log. If a log file over-
flows, all auditing put there stops.

• /var/adm/utmpx - keeps information on who is currenly logged in. File
used by who command.

• /var/adm/wtmpx - keeps information on who logs in/out and of when
the machine reboots

1.1 Log Rotation

• When running a server, even one at home, the size of logs would become
very large. Since the standard is keeping the most recent one without any
additional numbers at the end, all of the logs need to be rotated down
when the current ones becomes too large or the time is set to rotate it.

• syslogd daemon accomplishes this

1



1.2 Cron Jobs

• It is an automated process which operates at preset intervals. For example,
clearing out your accumulated spam at the end of the week. You can also
use a daemon to do this, but it would be harder to write and would have
to constantly run and take up your system’s resrouces.

• Accomplished through crontab command, which uses crond daemon
which constantly runs and check if its time to execute your process

• crontab -l lists your current crons

• crontab -e edits the file containing your crons

• contab -r deletes all of your cron jobs

2 Shell Scripting

• The first line of your shell script will start with #!/bin/bash if you are
writing a bash script. You can replace bash by your favorite shell

• Then you would want to have some comments about what the script does,
your name, date, etc. Use # for comments which the script will ignore.

• To execute a script you will need to change the permissions to make the
file executable with 755 for example and then execute the script with ./.
For example to execute a script foo.sh you will need to type ./foo.sh

• You can reference variables by putting a $ before them. For example,
to display the terminal you are currently using, you would type echo
$TERM.

• Enclose anything in ” ” that you want treated as a string.

• Use backquotes ‘ ‘ to execute commands. Example: echo ”Today is
‘date‘ ” vs echo ”Today is date.” will print Today is March 13
22:53:18 PST 2006 vs Today is date.

• Use read to prompt for input and read it. For example read fname will
read whatever user inputs and stores it as fname.

• To put more than one command on one line of the shell script, use ; eg
who; ls

2.1 If, Else, For, While

• A typical example of how you would use the if
else statements.

2



if condition
then
if condition
then
.....
..
do this
else
....
..
do this
fi
else
...
.....
do this
fi

.

• For for loops you will need to put the regular statement in double paren-
thesis and a do, for example for (( i=0; i<5; i++)); do echo $i; done

2.2 Wild Card Characters

• * matches any number of characters

• ? matches any single character

• [] matches all characters enclosed in brackets, eg ls [abc]* matches any file
names that begin with a b or c. [ - ] will match a range of characters, for
example [1-10] will match any number between 1 through 10.

• ! does not match any of the charcters following it

3


