
System Administration for the Web:Week 7 Le
ture NotesBasi
 Programming and PerlO
tober 24, 20051 What is Programming?Most
omputer s
ientists would de�ne programming as implementing an ab-stra
t algorithm using a programming language to produ
e a set of instru
tionsthat a
omputer
an understand.I think that's a dull and very di�
ult to understand de�nition. Programsare like re
ipes for making food, and, using that analogy, programming is thepro
ess of organizing the produ
tion of a
ertain type of food into a set of
onsistent and reprodu
ible steps.Some re
ipes are quite simple and linear, like those for mixing drinks. Youtake a
ertain amount of various ingredients and
ombine them in a
ertain order.Other re
ipes are more
ompli
ated and usually require making de
isions: to�ip or not to �ip a steak on a grill or whether to take
ookies out of an oven.Regardless of the
omplexity of a
ertain
omputer program, though, pro-gramming is almost always a

omplished in 4 steps:1. Planning2. Prototyping and Coding3. Testing and Debugging4. ReleaseStep 2 is often repeated after Step 3 upon the dis
overy of programming errors.2 Why Program?Simple: fame, fortune, or laziness.In the
ontext of system administration, programming usually falls under lazi-ness. As you've seen with shell s
ripts, programs
an automate repetitive tasksand save system administrators a ton of work.1

3 PerlThe programming language you will be learning is Perl, the Pra
ti
al Extra
tionand Reporting Language. Perl was originally
reated by Larry Wall, a one-timegraduate student at UC Berkeley, and is
urrently maintained by programmersall over the world. Perl was originally designed to manipulate text �les su
h aslog �les � hen
e extra
tion and reporting � but has evolved into an extremely-versatile language for everything from shell s
ripts to
orporate websites.3.1 Perl's Strengths
• Ex
ellent text manipulation
• Fast prototyping
• Flexible syntax
• No arti�
ial limits3.2 Perl's Weaknesses
• Interpreted language
• Flexible syntax3.3 How is Perl Used?
• Amazon.
om
• MovableType
• Slashdot
• Sweden's pension system
• A server near you4 Data and Data Stru
turesData is anything your program must tra
k, be it user-input, dates, values, quan-tities,
olors, et
. S
alar data is the basi
 unit of data in Perl.S
alar data
an be anything from letters, words, numbers, senten
es, para-graphs, pun
tuation marks, or any
ombination of these
ategories. To Perl,s
alar data is a merely a stream of
hara
ters, su
h as letters, numbers, spa
es,and symbols. Additionally, there is a
ategory of
hara
ters that require spe
ialrepresentation in Perl through the use of es
ape-sequen
es ;
ommon examplesof su
h
hara
ters are found in Table 1.S
alar data in Perl is held in three types of basi

ontainers or data stru
-tures: variables, arrays, and hashes. 2

Es
ape-Sequen
e Meaning\n Newline\t Tab\\ Ba
kslash (\)\� Double quote (�)Table 1: Common Perl Es
ape-Sequen
esNOTE: Perl is a very
ontext-sensitive language. This means that it will try toautomati
ally understand how you wish to use a pie
e of s
alar data. Forexample, the s
alar data �45�
ould be interpreted as either the number 45or a string
omposed of the
hara
ters 4 and 5. Unlike other programminglanguages, where you mu
h always spe
ify the
ontext under whi
h youare using a pie
e of s
alar data, Perl will automati
ally de
ide for youdepending on what you do to the data.4.1 VariablesVariables are the simplest type of data stru
ture in Perl; they hold a singlepie
e of s
alar data. Variable names begin with a dollar sign ($) followed by
hara
ters that uniquely identify ea
h variable � $sample_variable.AssignmentAssigns a pie
e of s
alar data to a variableOperator: =Example: $sample_variable = �sdf343fd�;Result: $sample_variable = �sdf343fd�Con
atenationJoins pie
es of s
alar data togetherOperator: .Example: $sample_variable = �year� . �2005�;Result: $sample_variable = �year2005�ChompRemoves a newline from the end of a pie
e of s
alar dataOperator:
homp 3

Example: $sample_variable = �This a senten
e.\n�;
homp $sample_variable;Result: $sample_variable = �This is a senten
e.�Mathemati
al Fun
tionsPerforms mathemati
al operations on numeri
 s
alar dataNote: Addition is the example presented, but other mathemati
al operators (*,/, -) work too.Operator: +Example: $sample_variable = �10�;$another_variable = $sample_variable + 1;Result: $sample_variable = �10�$another_variable = �11�4.2 ArraysArrays are data stru
tures that hold multiple pie
es of s
alar data, ea
h indexedby a number. Arrays are best des
ribed as a numbered list of s
alar data pie
es.Array names begin with an at-sign (�) followed by
hara
ters that uniquelyidentify ea
h array � �sample_array. Elements of an array are referen
ed by adollar sign followed by the name of the array and the index of the element insquare bra
kets � $sample_array[0℄. Indi
es numbering begins at zero.NOTE: Most variable operations
an be performed on individual array ele-ments.Assignment Method #1Assigns s
alar data to an arrayOperator: =Example: $sample_array[0℄ = �data_pie
e_0�;$sample_array[1℄ = �data_pie
e_1�;Result: �sample_array =0 -> �data_pie
e_0�1 -> �data_pie
e_1�
4

Assignment Method #2Assigns s
alar data to an arrayOperator: ()Example: �sample_array = (�data_pie
e_0�, �data_pie
e_1�);Result: �sample_array =0 -> �data_pie
e_0�1 -> �data_pie
e_1�PopRemoves the last element of an array and returns itOperator: popExample: �sample_array = (�data_pie
e_0�, �data_pie
e_1�);$temp = pop �sample_array;Result: �sample_array =0 -> �data_pie
e_0�$temp = �data_pie
e_1�PushAdds an element to the end of an arrayOperator: pushExample: �sample_array = (�data_pie
e_0�, �data_pie
e_1�);push �sample_array, �data_pie
e_2�;Result: �sample_array =0 -> �data_pie
e_0�1 -> �data_pie
e_1�2 -> �data_pie
e_2�Shift and UnshiftRemoves and adds an element to the beginning of an array, respe
tivelySimilar syntax as pop and push
5

4.3 HashesHashes are the most �exible basi
 data stru
ture available in Perl. They aresimilar to arrays in that they hold multiple pie
es of s
alar data, but rather thanhaving elements indexed by a number, they are indexed by words or, more appro-priately, keys. Hash names begin with a per
entage sign (%) followed by
hara
-ters that uniquely identify ea
h hash � %sample_hash. Elements of an array arereferen
ed by a dollar sign followed by the name of the array and the key of theelement in
urly bra
kets and quotation marks � $sample_hash{�key_name�}.NOTE: Most variable operations
an be performed on individual hash ele-ments.Assignment Method #1Assigns s
alar data to a hashOperator: =Example: $sample_hash{�name�} = "stephen";$sample_hash{�lo
ation�} = "berkeley";Result: %sample_hash =�name� -> "stephen"�lo
ation� -> "berkeley"Assignment Method #2Assigns s
alar data to a hashOperator: =, =>Example: %sample_hash = (�name� => "stephen",�lo
ation� => �berkeley�,);Result: %sample_hash =�name� -> "stephen"�lo
ation� -> "berkeley"KeysReturns an array of the keys of a hash (in no parti
ular order)Operator: keys
6

Example: %sample_hash = (�name� => "stephen",�lo
ation� => �berkeley�,);�my_array = keys %sample_hash;Result: �my_array =0 -> �lo
ation�1 -> �name�4.4 Advan
ed Data Stru
turesIt is possible to nest one type of data stru
ture inside of another data stru
tureor even inside the same type of data stru
ture; that is, it is possible to
reatearrays of hashes or hashes of hashes. However, the syntax and theory for doingso is beyond the s
ope of this Perl introdu
tion. Please refer to the
ommandperldo
 perlreftut or any other do
umentation on Perl referen
es.5 Control Stru
tures and Comparison OperatorsSometimes it is ne
essary to make a de
ision in a program or to perform a setof a
tions multiple times. Control stru
tures provide the fa
ility to do both ofthese things.Control stru
tures are blo
ks of Perl
ode en
losed in
urly bra
kets whoseexe
ution is dependent on some kind of test(s). These tests are usually per-formed using
omparison operators to make some sort of
omparison, but they
an also be the value of some variable. The most
ommonly used
ontrol stru
-tures in Perl are if, while, and forea
h.5.1 The if Control Stru
tureThe basi
 stru
ture of an if
ontrol stru
ture is:if (TEST) {CODE_IF_TRUE}where TEST is some sort of
omparison or value, that, if true, results in theexe
ution of CODE_IF_TRUE, whi
h
an be multiple Perl operations.5.2 Comparison OperatorsPerl provides a group of
omparison operators that
an be used in test
onditionsfor
ontrol stru
tures. Comparison operators are divided into two
ategories,numeri
 and string operators (Table 2). It is important that you use the
orre
ttype of
omparison operator; using the improper type of
omparison operatorwill result in unexpe
ted program behavior.7

Comparison Numeri
 StringEqual == eqNot equal != neLess than < ltGreater than > gtLess than or equal to <= leGreater than or equal to >= geTable 2: Numeri
 and String Comparison OperatorsI mentioned earlier that test
onditions
ould also be values. In Perl, anyvalue other than 0 or null (an unde�ned variable) is true. Consequently, you
an provide a variable name as a test
ondition, and, depending upon its valueor whether it's de�ned, the test will return true or false.5.3 The while Control Stru
tureThe basi
 stru
ture of a while
ontrol stru
ture is:while (TEST) {CODE_IF_TRUE}where TEST is some sort of
omparison or value, that, if true, results in the exe-
ution of CODE_IF_TRUE, whi
h
an be multiple Perl operations. CODE_IF_TRUEwill be repeated until TEST is false, so it is important that CODE_IF_TRUE doessomething to modify the test
ondition so that the program does not exe
uteCODE_IF_TRUE forever �
reating an in�nite loop.5.4 The forea
h Control Stru
tureThe basi
 stru
ture of a forea
h
ontrol stru
ture is:forea
h $TEMP_VAR (�ARRAY) {CODE_PER_ARRAY_ELEMENT}where $TEMP_VAR is the name of a temporary variable that will hold an elementof �ARRAY. forea
h will
opy an element of �ARRAY into $TEMP_VAR, and exe-
ute CODE_PER_ARRAY_ELEMENT for ea
h � hen
e the name � element of array.forea
h
ontrol stru
tures are the best way to perform some a
tion on ea
helement of an array.
8

6 Basi
 Input and Output6.1 InputYou
an get input from a user by using the assigning the value <STDIN> to avariable. For example,$the_user_input = <STDIN>;whi
h will read the input from a user until the Return key is pressed.NOTE: The value assigned to su
h a variable will also
ontain the newline
hara
ter, sin
e the input is terminated by a Return. Consequently, it isadvisable to
homp the variable (Se
tion 4.1).6.2 OutputYou
an present output to a user by using the print
ommand. For example,print �Hello World!\n�;whi
h will display the string �Hello World!� followed by a newline.7 A Simple Perl Program#!/usr/bin/perlprint "I'm thinking of a number between 1 and 100.\n";$guess = -1;$number = int rand(100) + 1;while ($guess != $number) {print "What is your guess? ";$guess = <STDIN>;
homp $guess;if ($guess < $number) { print "Too low!\n"; }if ($guess > $number) { print "Too high!\n"; }}print "You got it right!\n";
9

