
System Administration for the Web:Week 7 Leture NotesBasi Programming and PerlOtober 24, 20051 What is Programming?Most omputer sientists would de�ne programming as implementing an ab-strat algorithm using a programming language to produe a set of instrutionsthat a omputer an understand.I think that's a dull and very di�ult to understand de�nition. Programsare like reipes for making food, and, using that analogy, programming is theproess of organizing the prodution of a ertain type of food into a set ofonsistent and reproduible steps.Some reipes are quite simple and linear, like those for mixing drinks. Youtake a ertain amount of various ingredients and ombine them in a ertain order.Other reipes are more ompliated and usually require making deisions: to�ip or not to �ip a steak on a grill or whether to take ookies out of an oven.Regardless of the omplexity of a ertain omputer program, though, pro-gramming is almost always aomplished in 4 steps:1. Planning2. Prototyping and Coding3. Testing and Debugging4. ReleaseStep 2 is often repeated after Step 3 upon the disovery of programming errors.2 Why Program?Simple: fame, fortune, or laziness.In the ontext of system administration, programming usually falls under lazi-ness. As you've seen with shell sripts, programs an automate repetitive tasksand save system administrators a ton of work.1

3 PerlThe programming language you will be learning is Perl, the Pratial Extrationand Reporting Language. Perl was originally reated by Larry Wall, a one-timegraduate student at UC Berkeley, and is urrently maintained by programmersall over the world. Perl was originally designed to manipulate text �les suh aslog �les � hene extration and reporting � but has evolved into an extremely-versatile language for everything from shell sripts to orporate websites.3.1 Perl's Strengths
• Exellent text manipulation
• Fast prototyping
• Flexible syntax
• No arti�ial limits3.2 Perl's Weaknesses
• Interpreted language
• Flexible syntax3.3 How is Perl Used?
• Amazon.om
• MovableType
• Slashdot
• Sweden's pension system
• A server near you4 Data and Data StruturesData is anything your program must trak, be it user-input, dates, values, quan-tities, olors, et. Salar data is the basi unit of data in Perl.Salar data an be anything from letters, words, numbers, sentenes, para-graphs, puntuation marks, or any ombination of these ategories. To Perl,salar data is a merely a stream of haraters, suh as letters, numbers, spaes,and symbols. Additionally, there is a ategory of haraters that require speialrepresentation in Perl through the use of esape-sequenes ; ommon examplesof suh haraters are found in Table 1.Salar data in Perl is held in three types of basi ontainers or data stru-tures: variables, arrays, and hashes. 2

Esape-Sequene Meaning\n Newline\t Tab\\ Bakslash (\)\� Double quote (�)Table 1: Common Perl Esape-SequenesNOTE: Perl is a very ontext-sensitive language. This means that it will try toautomatially understand how you wish to use a piee of salar data. Forexample, the salar data �45� ould be interpreted as either the number 45or a string omposed of the haraters 4 and 5. Unlike other programminglanguages, where you muh always speify the ontext under whih youare using a piee of salar data, Perl will automatially deide for youdepending on what you do to the data.4.1 VariablesVariables are the simplest type of data struture in Perl; they hold a singlepiee of salar data. Variable names begin with a dollar sign ($) followed byharaters that uniquely identify eah variable � $sample_variable.AssignmentAssigns a piee of salar data to a variableOperator: =Example: $sample_variable = �sdf343fd�;Result: $sample_variable = �sdf343fd�ConatenationJoins piees of salar data togetherOperator: .Example: $sample_variable = �year� . �2005�;Result: $sample_variable = �year2005�ChompRemoves a newline from the end of a piee of salar dataOperator: homp 3

Example: $sample_variable = �This a sentene.\n�;homp $sample_variable;Result: $sample_variable = �This is a sentene.�Mathematial FuntionsPerforms mathematial operations on numeri salar dataNote: Addition is the example presented, but other mathematial operators (*,/, -) work too.Operator: +Example: $sample_variable = �10�;$another_variable = $sample_variable + 1;Result: $sample_variable = �10�$another_variable = �11�4.2 ArraysArrays are data strutures that hold multiple piees of salar data, eah indexedby a number. Arrays are best desribed as a numbered list of salar data piees.Array names begin with an at-sign (�) followed by haraters that uniquelyidentify eah array � �sample_array. Elements of an array are referened by adollar sign followed by the name of the array and the index of the element insquare brakets � $sample_array[0℄. Indies numbering begins at zero.NOTE: Most variable operations an be performed on individual array ele-ments.Assignment Method #1Assigns salar data to an arrayOperator: =Example: $sample_array[0℄ = �data_piee_0�;$sample_array[1℄ = �data_piee_1�;Result: �sample_array =0 -> �data_piee_0�1 -> �data_piee_1�
4

Assignment Method #2Assigns salar data to an arrayOperator: ()Example: �sample_array = (�data_piee_0�, �data_piee_1�);Result: �sample_array =0 -> �data_piee_0�1 -> �data_piee_1�PopRemoves the last element of an array and returns itOperator: popExample: �sample_array = (�data_piee_0�, �data_piee_1�);$temp = pop �sample_array;Result: �sample_array =0 -> �data_piee_0�$temp = �data_piee_1�PushAdds an element to the end of an arrayOperator: pushExample: �sample_array = (�data_piee_0�, �data_piee_1�);push �sample_array, �data_piee_2�;Result: �sample_array =0 -> �data_piee_0�1 -> �data_piee_1�2 -> �data_piee_2�Shift and UnshiftRemoves and adds an element to the beginning of an array, respetivelySimilar syntax as pop and push
5

4.3 HashesHashes are the most �exible basi data struture available in Perl. They aresimilar to arrays in that they hold multiple piees of salar data, but rather thanhaving elements indexed by a number, they are indexed by words or, more appro-priately, keys. Hash names begin with a perentage sign (%) followed by hara-ters that uniquely identify eah hash � %sample_hash. Elements of an array arereferened by a dollar sign followed by the name of the array and the key of theelement in urly brakets and quotation marks � $sample_hash{�key_name�}.NOTE: Most variable operations an be performed on individual hash ele-ments.Assignment Method #1Assigns salar data to a hashOperator: =Example: $sample_hash{�name�} = "stephen";$sample_hash{�loation�} = "berkeley";Result: %sample_hash =�name� -> "stephen"�loation� -> "berkeley"Assignment Method #2Assigns salar data to a hashOperator: =, =>Example: %sample_hash = (�name� => "stephen",�loation� => �berkeley�,);Result: %sample_hash =�name� -> "stephen"�loation� -> "berkeley"KeysReturns an array of the keys of a hash (in no partiular order)Operator: keys
6

Example: %sample_hash = (�name� => "stephen",�loation� => �berkeley�,);�my_array = keys %sample_hash;Result: �my_array =0 -> �loation�1 -> �name�4.4 Advaned Data StruturesIt is possible to nest one type of data struture inside of another data strutureor even inside the same type of data struture; that is, it is possible to reatearrays of hashes or hashes of hashes. However, the syntax and theory for doingso is beyond the sope of this Perl introdution. Please refer to the ommandperldo perlreftut or any other doumentation on Perl referenes.5 Control Strutures and Comparison OperatorsSometimes it is neessary to make a deision in a program or to perform a setof ations multiple times. Control strutures provide the faility to do both ofthese things.Control strutures are bloks of Perl ode enlosed in urly brakets whoseexeution is dependent on some kind of test(s). These tests are usually per-formed using omparison operators to make some sort of omparison, but theyan also be the value of some variable. The most ommonly used ontrol stru-tures in Perl are if, while, and foreah.5.1 The if Control StrutureThe basi struture of an if ontrol struture is:if (TEST) {CODE_IF_TRUE}where TEST is some sort of omparison or value, that, if true, results in theexeution of CODE_IF_TRUE, whih an be multiple Perl operations.5.2 Comparison OperatorsPerl provides a group of omparison operators that an be used in test onditionsfor ontrol strutures. Comparison operators are divided into two ategories,numeri and string operators (Table 2). It is important that you use the orrettype of omparison operator; using the improper type of omparison operatorwill result in unexpeted program behavior.7

Comparison Numeri StringEqual == eqNot equal != neLess than < ltGreater than > gtLess than or equal to <= leGreater than or equal to >= geTable 2: Numeri and String Comparison OperatorsI mentioned earlier that test onditions ould also be values. In Perl, anyvalue other than 0 or null (an unde�ned variable) is true. Consequently, youan provide a variable name as a test ondition, and, depending upon its valueor whether it's de�ned, the test will return true or false.5.3 The while Control StrutureThe basi struture of a while ontrol struture is:while (TEST) {CODE_IF_TRUE}where TEST is some sort of omparison or value, that, if true, results in the exe-ution of CODE_IF_TRUE, whih an be multiple Perl operations. CODE_IF_TRUEwill be repeated until TEST is false, so it is important that CODE_IF_TRUE doessomething to modify the test ondition so that the program does not exeuteCODE_IF_TRUE forever � reating an in�nite loop.5.4 The foreah Control StrutureThe basi struture of a foreah ontrol struture is:foreah $TEMP_VAR (�ARRAY) {CODE_PER_ARRAY_ELEMENT}where $TEMP_VAR is the name of a temporary variable that will hold an elementof �ARRAY. foreah will opy an element of �ARRAY into $TEMP_VAR, and exe-ute CODE_PER_ARRAY_ELEMENT for eah � hene the name � element of array.foreah ontrol strutures are the best way to perform some ation on eahelement of an array.
8

6 Basi Input and Output6.1 InputYou an get input from a user by using the assigning the value <STDIN> to avariable. For example,$the_user_input = <STDIN>;whih will read the input from a user until the Return key is pressed.NOTE: The value assigned to suh a variable will also ontain the newlineharater, sine the input is terminated by a Return. Consequently, it isadvisable to homp the variable (Setion 4.1).6.2 OutputYou an present output to a user by using the print ommand. For example,print �Hello World!\n�;whih will display the string �Hello World!� followed by a newline.7 A Simple Perl Program#!/usr/bin/perlprint "I'm thinking of a number between 1 and 100.\n";$guess = -1;$number = int rand(100) + 1;while ($guess != $number) {print "What is your guess? ";$guess = <STDIN>;homp $guess;if ($guess < $number) { print "Too low!\n"; }if ($guess > $number) { print "Too high!\n"; }}print "You got it right!\n";
9

