System Administration for the Web:
Week 5 Lab

10 October 2005

1 Notes and Errata

I’ve noticed that some of you have not properly setup your shells. During the
second week of class, students were asked to input the following commands into
a terminal:

cp “cs198-ec/public_html/setup.sh .
sh setup.sh

The following week, students were asked to change their default login shell to
bash. If you have not done so or are unsure if you did, please refer to the Section
1: Pre-Lecture Tasks of the Week 3 Lab for more information.

As a reminder, it is in your best interest to complete each laboratory assign-
ment. Knowledge of and familiarity with every technique and tool presented in
the laboratories will be necessary to complete the final project. The 5-6 section
instructors are here to help — don’t be afraid to ask them for help!

The lab submission policies for this lab are the same as previous labs.

2 Lab for Week 5

2.1 Don’t Panic!

[1] List the top three things that confuse you the most. We’ll collate all your
responses and address the most common problems at the beginning of
lecture next week.

2.2 Log Files

As explained in lecture, log files are the most important tool for auditing the
performance, stability, security, and overall health of a server. You can be pretty
sure that, if something goes wrong, there’ll something about it in the logs.

All log files mentioned in this section can be found in “cs198-ec/labs/1lab5.
These log files are actual log files taken from a variety of Linux servers.



[1] Let’s take a look at daemon.log. This file is actually the first 100 lines of
a log file I took from a server in Europe this morning. How is the log file
organized? How can you distinguish different log entries? What is the
general format of each log entry?

[2] The primary purpose of log files is to help system administrators locate
and diagnose errors. Most of the lines in the sample daemon.log are
error messages. What is the most common error? Use a search engine to
determine what this error message means and see if you can find a way to
fix the problem.

[3] Sometimes log files can record too much information. auth.log demon-
strates this problem. At first glance, it seems that the log file just con-
tains entries from the cron daemon. However, upon closer inspection, you
will notice that there are a number of entries indicating that a malicious
person has attempted to break into the server. Find some way to filter
out the useless cron daemon entries so you can find these important log
entries. Hint: grep can be instructed to ignore (the inverse of match) lines
that satisfy a certain pattern.

As demonstrated in the previous exercise, knowledge of text manipulation tools
is very important for system administrators. One of the most popular and pow-
erful programming languages for UNIX platforms, Perl, the Practical Extraction
and Report Language, was originally designed for the expressed purpose of text
manipulation. System administrators often write Perl programs to parse or
process log files to find important log entries and alert them of major problems.
You'll be learning the basics of Perl in the coming weeks.

[4] The last two log files you will be analyzing are Apache log files. Every time
you visit a web page hosted on an Apache web server, Apache makes a log
entry with the time, your IP address, your request, and other information.
Take a look at access.log and describe its format.

[5] Sometimes you’ll notice strange entries in your Apache logs. There are
worms (malicious automated programs) that search the Internet for web
servers and try to hack into them. Microsoft’s web server, IIS, is especially
prone to these worms. Thankfully, Apache is not vulnerable to most of the
worms that target Microsoft servers, but, as explained in the previous ex-
ercise, Apache will generate a log entry for every request it receives. These
attack requests, while ineffective against Apache, usually result in log en-
tries composed of strange character sequences. Look in access.log.2 and
find an example of such an entry.

2.3 Shell Scripts

System administrators are lazy people. They will attempt to automate their
jobs as much as possible. One of the tools they use to reduce the amount of
work they have to do is a shell script.



In its simplest form, a shell script is a file that begins with a shebang line
that identifies the file as a shell script and contains a list of commands after it.
For those familiar with Windows scripting, a UNIX shell script is the equivalent
of a batch script. Traditionally, the extension of a shell script file is sh.

[1] Take alook at “cs198-ec/public_html/setup.sh. You ran this shell script
at the beginning of the second week to setup your inst account. What is
the shebang line? What is the format of this shell script?

As you have probably guessed, a shell script is composed of the same type
of commands you would normally type into a command prompt, with each
command on its own line. You should note that setup.sh is a very basic shell
script; shell scripts actually support loops and other constructs that you would
expect in a high-level programming language. If you’re interested in learning
more, consult the Internet or O’Reilly’s Learning the bash shell.

[2] Write a shell script to do Exercise 1 of the Week 2 lab.

[3] Execute your shell script to see if it works. Reminder: you may need to
change the permissions of your shell script so that you can execute it.

2.4 Crontab

Shell scripts are a godsend for lazy system administrators — they allow system
administrators to wrap complex and repetitive tasks into a simple program.
However, a system administrator’s laziness does not end there. For tasks that
occur at regular intervals, system administrators don’t want to sit around and
wait to execute a shell script at the right time. Thus, crontab was created.

Crontab is a UNIX daemon that executes a command at regular intervals.
It reads a user’s configuration file and executes any listed commands at the
specified time or interval.

NOTE: Unfortunately, the inst computers have disabled crontab. In order
to perform the following exercises, you’ll need to SSH into your OCF account.
On the OCF computers, the default editor for the crontab configuration file
is ed. Since most of you probably do not know how to use ed or dislike it,
I suggest you change the EDITOR environment variable to a more user-friendly
text editor, such as vim or nano. Hint: You’ll need to use either export or setenv
to set the environment variable. Please refer to last week’s homework for more
information regarding environment variables.

[1] Write a shell script that does something you can observe, other than gen-
erating output. For example, you could write a shell script that creates
a file. You do remember the command to create a blank file, right? Test
your shell script to make sure it works, and once you have confirmed that
it works, reset whatever you had the script do (ex., if the script created a
file, delete it).



[2] Edit your crontab to execute the command within the next 5 minutes. Wait
for 5 minutes to pass and see if the script was executed by crontab. If not,
try again or ask for help.



